Sirt integrali

Sirt integrali – biror S sirt- da berilgan f(x, u, z) funktsiyadan olingan intefal. S sirt sillik, efi chiziklar yordamida sp … , sn bo’lakchalarga ajra- tiladi. 5. dagi ixtiyoriy mg=(XG yjt i) nuqtani olib, yig’indi tuziladi, bunda- gi dsj miqdor st bo’lakchaning sirti. Agar s, bo’lakchalar diametrlarining eng kat- tasi nolga intilganda yig’indi (1) biror chekli limitga ega bo’lsa, bu limit f(x, u, z) funktsiyadan S sirt bo’yicha olingan bi- rinchi turdagi S. i. deyiladi va ilf(x,y,z) ds kabi belgilanadi. Mas, S da sirt zich- ligi /ga teng bo’lgan massa taqsimlangan bo’lsa, / dan S bo’yicha olingan integral S sirtning umumiy massasini ifoda- laydi. Fizika va mexanikaning ayrim masalalarida, mas, suyuqlikning sirt orqali o’tuvchi oqimini aniklashda, 5; yuzachalar o’rniga ularning 3 ta koordi- nata tekisligidagi proektsiyalarining yuzlari qaraladi. Bu holda S sirt ori- entasiyalangan (ya’ni sirtga o’tkazilgan normallar yo’nalishlarining qaysi biri musbat hisoblanishi ko’rsatilgan) bo’lishi kerak. Bunday yig’indilarning limitlari ikkinchi turdagi S. i. deyila- Di. Orientasiyalangan sirtlarda, faqat, birinchi turdagi S. i. qaraladi. Matema- tika va uning tatbiklarida birinchi tur- dagi S.i.larni egri chiziqli integrallar b-n bog’lovchi Stoke formulasi, ikkinchi turdagi S.i.larni hajm integrallar b-n bog’lovchi Ostrogradskiy formulasi muhim ahamiyatga ega.